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Sliding lubricated anisotropic rough surfaces

F. Plouraboue´, M. Prat, and N. Letalleur
Institut de Mécanique des Fluides de Toulouse, UMR CNRS-INP/UPS No.5502, Avenue du Professeur Camille Soula,

31400 Toulouse, France
~Received 10 October 2000; published 11 June 2001!

The object of this paper is to study the effects of lubricant film flow, pressurized and sheared between two
parallel rough surfaces in sliding motion. The influence of microscopic surface roughness on lubricant film
flow macroscopic behavior is described through five nondimensional parameters called flow factors. These
macroscopic transport parameters are related to the local geometry of apertures and surfaces. Short- and
long-range-correlated surface roughnesses display very different macroscopic behaviors when surfaces are
close to contact. These behaviors are related to underlying surface roughness parameters such as the correlation
length and the self-affine Hurst exponent. The problem is numerically studied, and results are compared to
some analytical asymptotic results.
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I. INTRODUCTION

A problem consisting of lubricating two sliding surface
is encountered in many mechanical and tribological appl
tions. When sliding surfaces become close, the lubricant
tion becomes increasingly dependent on the surface topo
phy. This can be the case in the context of reading
recording devices such as magnetic recording disks@1#, or
rolling processes@2#. In those applications it may be crucia
to estimate the lubricant interaction with solid surfaces
order to prevent contact between two solids which co
damage the surfaces. Hence many authors have devoted
and effort to elaborate models in order to estimate this sm
scale interactions between surfaces and lubricant@3,4#.

On the other hand, surface topography itself has rece
great attention in many areas due to the growing deve
ment of refined measurements using mechanical, optica
electrical probes. In the context of engineering surfac
many studies were devoted to surface topography meas
ments@5#, showing in many cases multiscale surface rou
ness. This has been shown in the case of forming or finish
processes~shaping and lapping,@6#! electrodischarge ma
chining, @7# sand blasting,@8# or rolling @9#. In the case of
magnetic recording disks@10,11# or rolled sheets@12# sur-
faces have been shown to be anisotropic and self-affine
abundant literature~see Ref.@13#, and references therein!
shows increasing evidence that industrial machined surfa
display long-range correlated surface roughness at a s
scales.

Hence it seems natural to address the question of w
influence such geometrical properties may have on flu
solid interactions at a macroscopic scale. Such a question
received considerable attention in different contexts, am
them the transport properties of fractures@14#. The influence
of self-affine fracture roughness on some geometrical pr
erties @15,16#, on electrical conductance and permeabili
@17–20#, on macro dispersion@21#, on percolation@22,23#,
and on drainage@24# has already been investigated.

As for sliding surfaces, short-range roughness geom
has been studied by many authors~see Ref.@4#!. This study
investigates a comparison between short- and long-ra
1063-651X/2001/64~1!/011202~10!/$20.00 64 0112
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correlated geometries on macroscopic transport coeffici
of lubricated sliding surfaces. The paper is organized as
lows. In Sec. II we introduce the considered geometry, a
recall the results of macroscopization of the Reynolds eq
tion. We introduce macroscopic transport coefficients cal
flow factors, which describe the influence of roughness at
macroscale. Section III presents the flow factors obtained
two independent sliding surfaces admitting short- and lo
range correlations. Two particular asymptotic regimes
discussed, when surfaces are far from each other or,
versely, close to contact. In the latter case, the flow fac
dependence on the correlation length or the Hurst expon
has been explicitly obtained.

II. FROM MICROGEOMETRY TO MACROSCOPIC
FLOW SCALE

A. Surface geometry

This study considers random surfaces, for which the sc
of the ‘‘macroscopic’’ geometry and the ‘‘microscopic
roughness are greatly distinct. This configuration is found
many situations for which, for example, a submillimet
roughness is superposed on that of some centimeter s
surfaces variations, as encountered in Ref.@12#. Moreover,
this work focuses on the case where the microscopic st
ture is invariant along one direction. The macroscale surf
is thus defined by a single valued functionZ(X,Y)—we
capitalize when referring to the macrostructure — while t
microscale has a one-dimensional roughnessz(x) along thex
axis. The variablesX andY vary very slowly in space com
pared tox, so that the typicalX andY length-scale variations
are considered to be large in comparison to thex variation,
which is usually called the elementary representative sc
and will be referred to asL.

Such surfaces are encountered in various contexts suc
magnetic recording disks@10,11# or rolled surfaces@12#. An
example of microscale anisotropic surface topography is r
resented in Fig. 1, obtained from an atomic force microsco
measurement in Ref.@12#. In the following, we will focus on
the statistical property of the microscopic surface height c
relation functionC(u),
©2001 The American Physical Society02-1
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FIG. 1. An example of a microscopic view o
an anisotropic surface topography from Ref.@12#,
using an atomic force microscope
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C~u!5^@z~x!2z~x1u!#2&, ~1!

where the averagê•••& is taken overx, along the represen
tative typical scaleL. Short-range-correlated surfaces exhi
a correlation lengthl, such thatC(u,l)5C(u/l), for which
C(u/l) becomes constant whenu@l. The exact correlation
function expression is generally not significant in compa
son to the precise value of the correlation lengthl.

Long-range-correlated surfaces display different prop
ties. As previously mentioned, fractional Brownian moti
~fBm! is a rather good description of many long-rang
correlated manmade surfaces. These self-affine profiles
the interesting property of being statistically invaria
through the affine transformationx→a1/zx. Hence the corre-
lation function satisfiesC(au)5a2zC(u) for positivea, or

C~u!5C~ l c!Uu

l
U2z

, ~2!

wherez is called the roughness or Hurst exponent, andl c is
an arbitrary microscopic length scale, the lower cutoff. T
length has been shown to be a few tens of nanometers fo
surface represented in Fig. 1. Scaling~2! permits an easy
measurement of the Hurst exponent from the computatio
the height power spectrumP(k)5uz̃(k)u2}k2122z, which is
the square of the Fourier transform of the profile height
displays a well-defined power law of the wave vectork. An
example of such a spectrum, obtained from different m
surements on rolled surfaces@12#, is shown in Fig. 2. It dis-
plays three decades of self-affine roughness, from a few
of nanometers to a few tens of microns. Expanding the
pression ofC(u) in Eq. ~1! leads to an equivalent form:

^~z~x!2Z!~z~x1u!2Z!&

^~z~x!2Z!2&
512A2S u

l c
D 2z

, ~3!

where the macroscale surface heightZ is the mean of the
microscale surface heightZ5^z&, and

A25
C~ l c!

2^@z~x!2Z#2&
. ~4!
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A is a characteristic parameter of the surface, usually ca
the roughness amplitude. The roughness amplitude of s
affine surfaces can also be described by another param
called the topothesyt, which is the characteristic scale fo
which local roughness slopes are of order 1. As a matte
fact, the slopes of self-affine surfaces increase as the ob
vation scale decreases. The topothesy is interesting to
sider because the Reynolds approximation used below
only valid for surfaces with small slopes. Thus the Reyno
approximation can adequately describe the flow field a
scale much larger thant. For example, the topothesyt was
evaluated in Ref.@12# to be of the order of ten nanomete
for rolled surfaces. In the following, we will consider bot
short- and long-range-correlated profiles at the microsca

B. Kinematics and microscopic flow

Two sliding surfaces lubricated by a Newtonian fluid a
considered. The macroscopic geometry, sketched in Fig
shows that, at the macroscopic scale, the apertureH between
top and bottom surfacesH(X,Y)5Z2(X,Y)2Z1(X,Y) can
be fully two dimensional. The top surface, number 2, slid
with velocity U2 not necessarily collinearly with that of th
lower surface 1,U1. The mean planes of the surfaces a

FIG. 2. Power spectra of the laminated surface profile obtai
in Ref. @12#.
2-2



a
re
lo
n
e

al
e
e

m
o

tu

v
oc
c
m
in
i
n

te
y

t

su
as
p

op
u

ch
-

-
d is
d
he
ure
ch
ure.
-
g

ace
ec-

ace
and

ar

the
less
face

ac

SLIDING LUBRICATED ANISOTROPIC ROUGH SURFACES PHYSICAL REVIEW E64 011202
considered to be parallel. A reference planez50 is intro-
duced, and each surface is described by its local heightzi ,
with macroscopic height̂zi&5Zi , wherei 51 and 2. In this
study it will be considered that both surface roughness
independent, and that deformations of surfaces are igno
Contacts between surfaces are not permitted. Hence the
aperture, defined bya5z22z1 is always positive. The mea
local aperturê a& at the microscale is simply related to th
local macroapertureH, ^a&5H5Z22Z1.

In such a confined geometry, inertial effects are gener
negligible, associated with a very small Reynolds numb
The laminar fluid flow between two rough surfaces is gen
ally simply not related to the surface topography@25#. An
important exception occurs when surface slopes are s
everywhere. In this context, which covers a broad range
manmade surfaces, the Stokes formulation of the momen
equation is simplified by the Reynolds~lubrication! approxi-
mation. In this approximation the pressure is constant o
the local aperture between the solid surfaces, and the l
velocity field has a negligible vertical component. The velo
ity field has two contributions: a Couette one coming fro
flow due to moving boundaries, and a Poiseuille one com
from the pressure gradient. The Couette contribution adm
a local linear vertical dependence, while the Poiseuille o
has a vertical parabolic profile. The pressure field comple
determines the flow field, and is related to the geometry b
bidimensional local Reynolds equation,

¹•S a3

12m
¹pD5

1

2
“a•~U21U1!, ~5!

wherep denotes the pressure at the microscale, andm is the
lubricant viscosity. The Reynolds equation is thus similar
a heterogeneous Darcy law with a permeabilitya3/12 related
to the underlying local distance between surfaces. The
face velocities act as a source term that will locally incre
the flow, and thus the pressure. When the local microsco
scale is very small compared to the large scale macrosc
description, one may find a homogenized macroscopic eq
tion for the local Reynolds equation~5!.

C. Macroscopic Scale

By using homogeneization or volume averaging te
niques as shown in Refs.@26–28#, one can relate the spa
tially averaged divergence free unit flowQ to the macro-
scopic pressureP through the equation

FIG. 3. System of two rough surfaces in sliding motion: a m
roscopic view.
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Q52
H3

12m
f•“P1

H

2
~U21U1!1

s

2
fs•~U12U2!, ~6!

wheres is the composite root mean square~rms! roughness
classically defined ass5As1

21s2
2 ~wheres i5A(zi2Zi)

2 is
the rms microscopic roughness of surfacei ). Reynolds flow
factorf andfs are diagonal tensors in the (x,y) coordinate
frame given by

f5S fx 0

0 fy
D 5S 1

H3^a23&
0

0
^a3&

H3

D
fs5S fs5

1

s^a23&
K z12Z11z22Z2

a3 L H 0

0 0
D . ~7!

The left termf is nothing but a reformulation of the well
known composition of parallel or series resistances, an
related to pressure forcing. Thefy parameter, associate
with parallel resistances, will not be analyzed further in t
following because of its trivial dependence on the apert
field, i.e, the third moment of the aperture distribution, whi
does not depend on the two point correlation of the apert
Conversely, the first flow factorfx does depend on this cor
relation structure, and thus will be of interest in the followin
sections. The second tensorfs , which has only one nonzero
component, comes from the mean contribution of the surf
motion on the lubricant flux, in the roughness streak dir
tion. Similarly the tangential shear vectort, which is the
stress tensor projection tangentially to the mean surf
plane, can be homogenized and exhibits some Couette
Poiseuille contributions,

t65
m

2
~f f I6ff s!•~U22U1!6

H

2
ff p•“P, ~8!

wheret1 is associated with the upper surface,t2 with the
lower one, andI is the identity tensor. The Couette she
flow factors tensors are again diagonal in the (x,y) frame,
and read

f f5H^a21&

ff s5S f f s53HF K z11z22Z12Z2

a3 L ^a22&

^a23&

2K z11z22Z12Z2

a2 L G 0

0 0

D .

~9!

The first term is scalar, and comes from the average of
Couette shear of sliding surfaces. The second term is
intuitive, and shows some dependence on both the sur

-

2-3
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F. PLOURABOUÉ, M. PRAT, AND N. LETALLEUR PHYSICAL REVIEW E64 011202
height and the local aperture. The Poiseuille shear flow
tor, driven by the pressure gradient, reads

ff p5S f f p 0

0
^a&
H D 5S ^a22&

H^a23&
0

0
^a&
H

51
D . ~10!

Hence macroscopic effective equations can be explicitly
lated to the microstructure geometry, i.e, to the local aper
and surface height, through five nondimensional parame
Two of these are associated with the pressure gradient
are called Poiseuille flow factors~i.e., fx ,f f p). Three of
them are associated with the surface relative velocity, and
thus called Couette flow factors~i.e., fs ,f f ,f f s). In the
special case considered here, surfaces 1 and 2 are unc
lated. The aperture field can be considered to be decomp
of two surfaces of heights equal to zero andz22z1 @29#.
Then it can be deduced that the Couette flow factors dep
only on the local aperture field, through

fs5
s1

22s2
2

s2
Fs~H,s,$a%!, f f s5

s1
22s2

2

s2
F f s~H,$a%!

~11!

wheres is the composite roughness and

Fs5
1

s S H2
^a22&

^a23&
D F f s53HS ^a21&2

^a22&2

^a23&
D .

~12!

It is noteworthy that in the case where both independ
surfaces share the same rms roughness, flow factorsfs and
f f s cancel out. This is a manifestation of the statistical sy
metry of the surfaces, which is also recovered for determ
istic symmetrical surfaces. Section III studies how these s
faces vary with the macroscopic apertureH and the
microgeometry statistical properties. In the following, it
considered that the height distribution of each surface res
from a Gaussian stochastic process. Being the difference
tween two Gaussian processes, the aperture field is al
Gaussian process, and therefore is fully characterized b
mean and covariance. It is thus investigated how the aper
correlation influences the transport properties of the lubric
between the two sliding surfaces, through flow factors.

III. FLOW FACTOR COMPUTATION

From definitions~7!–~12!, it is now possible to compute
flow factors. Nevertheless, their average on stochastic mi
geometries are mainly the quantities of physical intere
Such a statistical description needs to perform its averag
the random surface height. This computation is numeric
performed, and compared to analytical estimates.

The numerically generated profile correlation function c
be prescribed using their Fourier formulation@30#. A Her-
mitic representationz̃(k)52 z̃!(2k) imposes a real profile
Gaussian height probability distributions of profile are o
01120
c-

-
re
rs.
nd

re

rre-
ed

nd

t

-
-
r-

lts
e-
a

its
re

nt

o-
t.
on
ly

n

-

tained from complex Gaussian amplitudes of the height F
rier representation. The chosen wave vector dependenc
the height Fourier transform allows one to generate eithe
short-range-correlated height profile or fractional Browni
motion.

The flow-factor computation has been achieved with
exact integration scheme. Generically, one only needs to
tially integrate some integer power of the local aperturean,
for which an exact expression of the integration element
easy to perform. When surfaces are close to contact,
precise procedure avoids using an adaptative step inte
tion, and minimizes the computation error. The profile leng
L and the number of profiles have been varied so that
computed quantities satisfactorily reach their mean estim
Typically, L has been chosen between 512 and 2048, and
number of realizations from 500 to 1000.

A. Short-range correlated Gaussian surfaces

This section considers finite correlated microgeome
profiles. The correlation length is bounded by the compo
roughnesss and the elementary representative scaleL, i.e,
s,l,L. The first bound,s, is related to the small slope
hypothesis that underlies a flow-factor macroscopic desc
tion through the lubrification approximation. The seco
bound comes from the definition of the elementary repres
tative scaleL.

Two asymptotic situations when surfaces are either
from or close to each other are specifically considered
order to shed some light on the numerical results. These
limits allow one to perform some analytical analysis. In t
first regime, the macroscopic mean apertureH is considered
to be large compared to the composite roughnesss. Their
ratio being a small parameter, it is used to expand the flo
factor expressions. In the second regime, it is stated that e
if the correlation lengthl is smaller thanL, it is larger than
the minimum aperture. This minimum aperture can be c
sidered as a small parameter to construct a saddle poin
proximation for flow factors.

The situation when surfaces are far from each othe
considered first. This case is related to some weak diso
expansion based on the parameters/H, which measures the
relative fluctuation of the local aperture field. Expanding
lations ~7!–~12! in powers of this parameter, one finds,
first order@29#, whens/H is small,

fy
x
.166S s

H D 2

, Fs.3
s

H
, f f p.123S s

H D 2

, ~13!

f f.11S s

H D 2

, F f s.3S s

H D 2

.

This result is generic, and does not depend on the spe
characteristics of the microgeometry. Nevertheless, the
cise range within which these expressions are valid does
pend on the microscopic statistical correlation. In fact, so
higher order terms of the weak disorder expansion in
small parameters/H are needed to exhibit such a depe
dence. For example, one needs to consider the third term~the
2-4



to
a
e
iz

r
tr
u

ri
e
e
b
e

ig

w
ld
o
n

f-

a
ic
hi
e

-

w
ac
ifi-
ni
nc
e
et
s

de

e
n
-
av
i-

ex-

act,
ear
ks,
pen-
nce
m.

tic

.
nce

l
ave
tion

ex-

SLIDING LUBRICATED ANISOTROPIC ROUGH SURFACES PHYSICAL REVIEW E64 011202
sixth power ofs/H) to obtain an explicit dependence offx
on the aperture correlation function@31#. Result~13! show
that when surfaces are far from each other, the flow fac
tend either to 0 or 1. Then, in this limit, macroscopic equ
tions are perfectly identical to microscopic ones. The ap
ture heterogeneities do not play any role, and macroscop
tion is trivial. Relations~13! then give the first correction fo
macroscopic equations arising from the microgeome
roughness. The physical interpretation of the obtained res
can be briefly discussed. The Poiseuille flow factorsfx and
f f p are diminished proportionally to the surfaces height va
ance, showing that the fluid flow and the shear stress du
the pressure gradient are slowed down by the presenc
roughness. Some additional fluid flow is then generated
this roughness, proportional to the velocity difference b
tween surfaces through the flow factorFs . Finally, the main
shear generated by the roughness is of Couette or
through flow factorsf f and f f s . This shear, while mostly
parallel to the surface velocity difference through the flo
factor f f , has a slight misalignment to this kinematic fie
throughf f s . This amounts to a macroscopic expression
the misalignment between the microscopic one-dimensio
roughness directionx and the kinematic surface velocity di
ference directionU22U1.

Let us now turn to the second regime, where surfaces
close to contact. It is also possible to obtain some analyt
estimates of the flow factor behavior in this regime. To t
end, it is necessary to consider the aperture probability d
sity function~PDF! p(a,x), which is the probability of find-
ing an aperturea at positionx relative to the prescribed mini
mum atx50, i.e, a conditional PDFp(a,x)[p(a(x)ua(0)
50). The dependence ofp(a,x) on the distancex to the
minimum is crucial, because the main contribution to flo
factors comes from the aperture distribution near cont
Nevertheless, the precise form of this PDF will not sign
cantly influence the flow-factor dependence with the mi
mum aperture near contact. Defining some minimal dista
se, with minxa(x)5se, allows one to describe the surfac
closeness, with a nondimensional arbitrary small param
e. It is then possible to approximate the negative moment
the aperture distribution given by

^a2n&5
1

LE0

L

dxE
0

`

p~a8,x!~es1a8!2nda8, ~14!

with a saddle point estimate. This estimate is given, provi
that the first and second derivatives ofp(a,x), with respect
to a, at a5se, are bounded by

^a2n&.I ~l!A 2p

n~n11!
~se!2n11, ~15!

where I (l)5*0
Lp(0,x)dx/L is a function of the correlation

length l which depends on the probability function at th
minimum, which is not precisely known. Approximatio
~15! holds for n.1. Whenn51, the saddle point approxi
mation is no longer sufficient to capture the diverging beh
ior. From Eq.~15!, we can thus write the flow factor approx
mation, near contact, as
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s3

Hm
3

I ~l!e2, Fs.
Hm

s
2A2e, f f p.

A2

Hm
e.

~16!

These results are typical of stochastic geometries. It is
pected that flow factorsfx andf f p cancel out when micro-
geometry surfaces tend toward contact. As a matter of f
these Poiseuille flow factors, describing the flux and sh
induced by the pressure gradient in the direction of strea
are zero when the passage is blocked up. The precise de
dence of these flow factors on the surface minimal dista
se is governed by the aperture geometry near its minimu
They differ from previous analytical results on determinis
sinusoidal surfaces@32#. For example,fx displays a power
of e5/2 rather thane2 for a deterministic sinusoidal aperture
Once again, it can be shown that this is a direct conseque
of the geometry of the minimum aperture vicinity.

Results~13! and ~16! are compared with the numerica
computations sketched in Figs. 4–8. These simulations h
been performed with a Gaussian short-range-correla
function of the formC(u)5s2(12e2u2/2l2

), varying the
correlation length l, by an order of magnitude from

FIG. 4. fx flow factor for a finite correlation lengthl. The
continuous line represents the weak disorder approximation
pressed in Eq.~13!

FIG. 5. f f p flow factor for a finite correlation lengthl with the
same convention as in Fig. 4.
2-5
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F. PLOURABOUÉ, M. PRAT, AND N. LETALLEUR PHYSICAL REVIEW E64 011202
531023L to 531022L, for various elementary represent
tive scalesL. The flow-factor behavior have shown no d
pendence on scaleL, as expected from flow factors definitio
and short-range correlation, wherel!L. The insets of the
figures especially illustrate Eq.~16! asymptotic behavior.
The first estimate@Eq. ~13!# is rather good whenH/s.5.
The saddle point approximation’s quality depends on
considered flow factor. The more peaked they are near c
tact, the better approximated they are. Hence the nondim
sional permeabilityfx is well captured by the asymptoti
due to its23 power dependence on the local aperture
represented in Fig. 4. Moreover, thefx prefactorI (l) de-
pendence onl, has been found from a data collapse of t
numerical simulations, indicating a scalingI (l)}l23/2. f f p
andFs are well described in the close vicinity of contacts
the saddle point estimate, but poorly approximated whee
.0.1.

The analysis of the Couette shear flow factorsf f andF f s
behavior, in the vicinity of contact shows an algebraic div
gence, as sketched in the inserts of Figs. 7 and 8. This di
gence is characterized by a power law exponentm :

f f}F f s}~se!2m. ~17!

This algebraic divergence of the shear Couette flow fact
with a minimum distancese, is qualitatively consistent with

FIG. 7. f f flow factor for a finite correlation lengthl with the
same convention as in Fig. 4.

FIG. 6. Fs flow factor for a finite correlation lengthl with the
same convention as in Fig. 4.
01120
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the one obtained in the deterministic sinusoidal case@32#.
This divergence is associated with an increasing Cou
shear, experienced when surfaces are close to contact. H
ever, the power law exponentm depends on the correlatio
lengthl, as can be deduced from Figs. 7 and 8. The lar
the correlation length, the more flow factors diverge, and
larger them exponent is. Nevertheless this dependence
rather smooth, as obtained from Fig. 9, which exhibits
logarithmic dependence:m}2 ln l. It is noteworthy that
when l is small, them exponent tends toward zero. Th
Couette shear divergence disappears as the correlation le
tends toward zero. Nevertheless this limit has to be con
tently considered with the hypothesis of a small slope, wh
gives a lower bound for the correlation lengthl.s. In this
limit, the divergence of shear Couette flow factors is s
algebraic but with a small exponent. The other limit, whe
l.L, extrapolating the results of Fig. 9, gives a value tha
close to 1/2, for the exponentm. This value is then consisten
with the exponentm51/2, obtained when analytically com
puting these flow factors, using a sinusoidal aperture dis
bution, which coincides with a random aperture profile w
correlation length equal to the representative scaleL @32#.

FIG. 8. F f s flow factor for a finite correlation lengthl with the
same convention as in Fig. 4.

FIG. 9. Power-law coefficientm of the shear Couette flow facto
vs the correlation lengthl with the same convention as in Fig. 4
The dot size represents the error bars of the numerical comp
tions.
2-6
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SLIDING LUBRICATED ANISOTROPIC ROUGH SURFACES PHYSICAL REVIEW E64 011202
B. Long-range-correlated surfaces

Long-range-correlated self-affine profiles are now un
study. Such fractional Brownian motions do not display a
typical correlation length, between a lower cutoffl c and an
upper cutoffLc . The flow factors are nevertheless strong
influenced by their long-range-correlation characterized
the Hurst exponentz and the roughness amplitudeA.

When surfaces are far apart from each other, the w
disordered results@Eq. ~13!# do apply, and give a correc
estimate of their dependence on the imposed mean ma
scopic distanceH. Conversely, when surfaces are close
contact, the transport properties become sensitive to the
relation specificity, in particular in the region where the a
erture is minimal. As a matter of fact, fractional Brownia
motion displays some interesting specific properties near
maxima and minima. Some results, conjectured from
merical simulations@33#, have stated that there are two r
gimes for the conditional probability density function of th
aperturep(a,x) estimated at distancex from the minimum :

p~a,x!5H 1

a
fS a

xzD a@a!

}x212z a!a!,

~18!

Here a!(x!) is the typical aperture for which the fraction
Brownian motion loses the memory of the maximum~or
minimum! position far fromx!. These two constants are re
lated by the affinity scalinga!5Ax!z. The first regime of
Eq. ~18! is simply given by the rescaling invariance of th
aperture cumulative distribution function. The second regi
is far from simple and there is, for now, no mathemati
demonstration of it@34#. This twofold behavior is neverthe
less known in the special case of Brownian motion whez
51/2. The specific behavior of the aperture field near con
influences flow factors when surfaces are near contact.
normalization condition of the PDF is related to the upp
and lower cutoffsLc and l c :

E
l c

Lc
dxE

0

`

p~a,x!da51. ~19!

The representative typical scaleL for averaging flow factors
has to be chosen so thatL>Lc . For the sake of simplicity,
one has chosenL5Lc in the following, while other choices
would nevertheless not have modified the obtained res
As previously done, a saddle point estimate of the nega
moment of the aperture can be computed, from the defini

^a2n&5
1

Lc
E

l c

Lc
dxE

0

`

da8p~a8,x!~es1a8!2nda. ~20!

Taking relation~18! into account, it can be approximated, f
a smalle,

^a2n&.
1

Lc
E

l c

x!

dxx212zA 2p

n~n11!
~se!2n11. ~21!
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Using normalization~19!, one can estimate in the limit
wherex!!Lc ,

E
l c

x!

dxx212za!.12E
1

`

uf~u!du. ~22!

The right-hand side of relation~22! is constant; then, nea
contact, the simple result holds:

^a2n&}
1

x!zLcAn~n11!
~se!2n11. ~23!

From this estimate, one can compute the flow facto
asymptotic expressions near contact :

fx}
s2x!z

Hm
3

Lce
2, fs.

Hm

s
2A2e, f f px.

A2

Hm
e.

~24!

One may note that these asymptotic behaviors are quite c
to the previous results for finite correlation length@Eq. ~16!#.
Their dependence on the minimum distancee is identical,
but the prefactor offx now displays some dependence
the Hurst exponentz and the upper cut offLc . It is interest-
ing to note that an increasing correlation of the apertu
associated with an increasing Hurst exponent, leads to
increasing permeability when surfaces are close to conta

These estimates are fully consistent with numerical res
reported in Figs 10–12. Scaling~24! allows a data collapse
of every numerical computation of the nondimensional p
meability fx near contact when the Hurst exponent vari
The linear dependence offx , with upper cutoffLc , has also
been numerically checked, but is not represented in th
figures for clarity’s sake. Simulations sketched in Fig
10–12 also permit one to estimate the validity of the sad
point approximation@Eq. ~24!#, which begins to hold when
e,0.1.

As previously observed, Couette shear flow factorsf f
andF f s diverge when surfaces are close to contact. From
twofold aperture behavior near contact@Eq. ~18!#, it is clear

FIG. 10. fx for a self-affine aperture. Hurst exponents rangi
from 0.1 to 0.9 have been computed. The inset shows the nume
data collapse obtained using rescaling@Eq. ~24!# near the contact.
2-7
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that their shared divergence with the^a21& moment cannot
be captured by a rough saddle point estimate. This div
gence numerically display the same interesting power
behavior as in the previous section. More precisely, the
sets of Figs. 13 and 14 show the power law behavior n
contact, whose exponentm depends on the Hurst exponentz.
The more correlated the aperture field is, the higher the va
of z is and more divergent the Couette shear is. This jo
behavior can be related to the Hurst exponent, as sketche
Fig. 15. This figure displays a power law dependence
shear flow factors near contact, which have the form

f f}F f s}e2m}e2(dcz), ~25!

wherec andd are two constants related to the surfaces a
plitudeA. Such an algebraic divergence of the Couette sh
flow factors was already obtained for a finite correlated
erture. Here the power law exponentm of this algebraic di-
vergence is shown to depend algebraically on the Hurst
ponent. The power law exponentm can be extrapolated from
Fig. 15 for Hurst exponent valuesz→0 andz→1, for which
it exhibits the extreme valuesm→0 and m→0.25. These
limits are consistent with the ones previously obtained
finite correlation in Sec. II.z→0 is associated with a deco

FIG. 11. f f p for a self-affine aperture with the same conve
tions as in Fig. 10.

FIG. 12. Fs Flow factor for a self-affine aperture with the sam
conventions as in Fig. 10.
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rrelation of the aperture field, where the algebraic diverge
of the Couette shear flow factors disappears. Them.0.25
value obtained in the other limit, wherez→1 is bounded as
expected by the deterministic result on a sinusoidal apert
for which m51/2.

These results show that the Couette shear stres
strongly influenced by the long-range nature of the apert
field, especially near contact. Numerically, the Couette sh
stress displays a power law dependence with the Hurst
ponent, which cannot be captured by a saddle point appr
mation. It is nevertheless tempting to associate the algeb
dependence of the power law exponentm with the specific
behavior of fractional Brownian motion near contact.

IV. CONCLUSIONS

Newtonian lubricant flow, between two microscopical
statistically independent anisotropic surfaces in sliding m
tion without solid contact, has been studied. The mac
scopic flux and shear experienced by both surfaces are
lated to their microscopic roughness through fi
nondimensional flow factors. The aperture field between s
faces entirely determines these flow factors. They have b

FIG. 13. f f for a self-affine aperture with the same conventio
as in Fig. 10. The inset shows a power-law divergence that dep
on the Hurst exponent near contact.

FIG. 14. F f s for a self-affine aperture with the same conve
tions as in Fig. 13.
2-8



ur
th
tu
o

e
e

er

tu
e
e
o
on
e

ni-
e
n

le
an

be-
ro-
the

ns
s to
spa-
in

al

les
as
ply

rs
the

ear
-
ro-
ctly
lu-

red
-
en
on-
the
und
r

ux
the

e

or

SLIDING LUBRICATED ANISOTROPIC ROUGH SURFACES PHYSICAL REVIEW E64 011202
computed numerically for short- and long-range apert
correlations. Asymptotic situations, where surfaces are ei
close to one another or far apart, have been analytically s
ied and compared to numerical calculus. The Poiseuille fl
factorsfx and f f p , and the Couette shear flow factorFs ,
exhibit rather generic behaviors when surfaces are clos
contact. It has nevertheless been found that the nondim
sional permeabilityfx prefactor does depends on the ap
ture correlation. Couette shear flow factorsf f and F f s di-
verge as surfaces are brought into contact. The exact na
of this divergence depends strongly on the aperture corr
tion. For a short-range-correlated profile, the Couette sh
flow factors diverges algebraically, with a power law exp
nent which logarithmically depends on the correlati
length. For a long-range-correlated profile, the Couette sh
flow factor exhibits an algebraic divergence with the mi
mum aperture. It has been found numerically that this div
gence has a power law dependence on the Hurst expone
the aperture correlation.

This study has been confined to uncorrelated profi
Some of the obtained results are modified when the top

FIG. 15. Diverging Couette shear flow factors exponentm near
contact, vs the Hurst exponentz. The dot size represents the err
bars of the numerical computations.
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bottom surfaces are intercorrelated. Such a correlation
tween solid surfaces occurs naturally during the rolling p
cess, where roughness is transferred from the steel roll to
workpiece@12# as well as in any process where deformatio
conform the two pieces one another. In this case, one ha
consider a spatiotemporal average rather than a simple
tial average in order to compute flow factors, as indicated
Ref. @36#. For a simple deterministic geometry, analytic
results show that intercorrelation mainly affectsfs andf f s
@32#, which are equal to zero when top and bottom profi
are identical. Moreover, numerical simulations as well
symmetry considerations indicate that this result also ap
for random identical profiles@35#.

Moreover, the obtained result for the shear flow facto
strongly depends on the one dimensional confinement of
microgeometry. In particular, the divergence of the sh
Couette flow factors will be smoothed out by two
dimensional effects. In the case of a two-dimensional mic
scopic roughness, flow factors cannot be computed dire
from the moments of the local aperture, but must be eva
ated from two-dimensional numerical computations requi
to solve closure problems@36#. Such a procedure should ex
hibit, at some point, nondiverging shear flow factors wh
reaching solid contact between surfaces. Finally, some n
dimensional coefficients, characterizing the anisotropy of
microscale roughness —such as the Peklenik number fo
in Refs. @26,4#— should provide a natural lower cutoff fo
the reported diverging behaviors.
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