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Sliding lubricated anisotropic rough surfaces
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The object of this paper is to study the effects of lubricant film flow, pressurized and sheared between two
parallel rough surfaces in sliding motion. The influence of microscopic surface roughness on lubricant film
flow macroscopic behavior is described through five nondimensional parameters called flow factors. These
macroscopic transport parameters are related to the local geometry of apertures and surfaces. Short- and
long-range-correlated surface roughnesses display very different macroscopic behaviors when surfaces are
close to contact. These behaviors are related to underlying surface roughness parameters such as the correlation
length and the self-affine Hurst exponent. The problem is numerically studied, and results are compared to
some analytical asymptotic results.
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[. INTRODUCTION correlated geometries on macroscopic transport coefficients
of lubricated sliding surfaces. The paper is organized as fol-
A problem consisting of lubricating two sliding surfaces lows. In Sec. Il we introduce the considered geometry, and
is encountered in many mechanical and tribological applicarecall the results of macroscopization of the Reynolds equa-
tions. When sliding surfaces become close, the lubricant mdion. We introduce macroscopic transport coefficients called
tion becomes increasing|y dependent on the surface topogrgow faCtOI‘S, which describe the influence of roughness at the
phy. This can be the case in the context of reading andhacroscale. Section Il presents the flow factors obtained for
recording devices such as magnetic recording djdksor  two independent sliding surfaces admitting short- and long-
rolling processe$2]. In those applications it may be crucial fange correlations. Two particular asymptotic regimes are
to estimate the lubricant interaction with solid surfaces indiscussed, when surfaces are far from each other or, con-
order to prevent contact between two solids which coulaversely, close to contact. In the latter case, the flow factor
damage the surfaces. Hence many authors have devoted tifi@Pendence on the correlation length or the Hurst exponent
and effort to elaborate models in order to estimate this smaffas been explicitly obtained.
scale interactions between surfaces and lubrif2yd.
On the other hand, surface topography itself has received 1. FROM MICROGEOMETRY TO MACROSCOPIC
great attention in many areas due to the growing develop- FLOW SCALE
ment of refined measurements using mechanical, optical, or
electrical probes. In the context of engineering surfaces,
many studies were devoted to surface topography measure- This study considers random surfaces, for which the scale
ments[5], showing in many cases multiscale surface rough-of the “macroscopic” geometry and the *“microscopic”
ness. This has been shown in the case of forming or finishingpughness are greatly distinct. This configuration is found in
processeqshaping and lapping,6]) electrodischarge ma- many situations for which, for example, a submillimeter
chining, [7] sand blasting[8] or rolling [9]. In the case of roughness is superposed on that of some centimeter scale
magnetic recording diskgl0,11] or rolled sheet§12] sur-  surfaces variations, as encountered in R&2]. Moreover,
faces have been shown to be anisotropic and self-affine. Athis work focuses on the case where the microscopic struc-
abundant literaturdsee Ref.[13], and references thergin ture is invariant along one direction. The macroscale surface
shows increasing evidence that industrial machined surfaces thus defined by a single valued functi@(X,Y)—we
display long-range correlated surface roughness at a smathpitalize when referring to the macrostructure — while the
scales. microscale has a one-dimensional roughreég} along thex
Hence it seems natural to address the question of whaixis. The variableX andY vary very slowly in space com-
influence such geometrical properties may have on fluidpared tox, so that the typicaK andY length-scale variations
solid interactions at a macroscopic scale. Such a question hase considered to be large in comparison to xheriation,
received considerable attention in different contexts, amongvhich is usually called the elementary representative scale,
them the transport properties of fractuféd]. The influence and will be referred to ak.
of self-affine fracture roughness on some geometrical prop- Such surfaces are encountered in various contexts such as
erties[15,16], on electrical conductance and permeability, magnetic recording disKs.0,11] or rolled surface$12]. An
[17-20, on macro dispersiof21], on percolation22,23, example of microscale anisotropic surface topography is rep-
and on drainagg24] has already been investigated. resented in Fig. 1, obtained from an atomic force microscopy
As for sliding surfaces, short-range roughness geometryneasurement in Ref12]. In the following, we will focus on
has been studied by many auth¢sse Ref[4]). This study the statistical property of the microscopic surface height cor-
investigates a comparison between short- and long-rangelation functionC(u),

A. Surface geometry
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FIG. 1. An example of a microscopic view of
an anisotropic surface topography from Réf],
using an atomic force microscope

C(u)=([z(x)—z(x+u)]?), .Y

A is a characteristic parameter of the surface, usually called
the roughness amplitude. The roughness amplitude of self-
affine surfaces can also be described by another parameter
called the topothesy, which is the characteristic scale for
which local roughness slopes are of order 1. As a matter of
function expression is generally not significant in compari-facf[’ the slopes of self-affine surfaces increase as the obser-
vation scale decreases. The topothesy is interesting to con-

son to the precise value of the correlation lenyth . A .
. : sider because the Reynolds approximation used below is
Long-range-correlated surfaces display different proper:

ties. As previously mentioned, fractional Brownian motion only valid for surfaces with small slopes. Thus the Reynolds

(fBm) is a rather good description of many Iong-range-apprOXimation can adequately describe the flow field at a

correlated manmade surfaces. These self-affine profiles ha\%:ale much larger thah For example, the topothesywas

: . . o . . —evaluated in Ref[12] to be of the order of ten nanometers
the interesting property of being statistically invariant

through the affine transformati oYy Hence the corre- for rolled surfaces. In the following, we will consider both
oug . o 0[25 ' » short- and long-range-correlated profiles at the microscale.
lation function satisfie€(au)=a“*C(u) for positive «, or

where the averagg - -) is taken over, along the represen-
tative typical scald.. Short-range-correlated surfaces exhibit
a correlation lengtix, such thaC(u,\)=C(u/\), for which
C(u/\) becomes constant whers\. The exact correlation

2L B. Kinematics and microscopic flow

Cu)=C(70) ' 2) Two sliding surfaces lubricated by a Newtonian fluid are

considered. The macroscopic geometry, sketched in Fig. 3,
where( is called the roughness or Hurst exponent, dZpds ~ shows that, at the macroscopic scale, the apeHuoetween
an arbitrary microscopic length scale, the lower cutoff. Thistop and bottom surfaceld (X,Y)=Z,(X,Y)—Z;(X,Y) can
length has been shown to be a few tens of nanometers for tHee fully two dimensional. The top surface, number 2, slides
surface represented in Fig. 1. Scalif®) permits an easy Wwith velocity U, not necessarily collinearly with that of the
measurement of the Hurst exponent from the computation dbwer surface 1,U;. The mean planes of the surfaces are

the height power spectrum(k) = [z(k)|?ck~*~2¢, which is

the square of the Fourier transform of the profile height. It 100
displays a well-defined power law of the wave vedtoAn
example of such a spectrum, obtained from different mea- 8.0 ¢
surements on rolled surfacgk?], is shown in Fig. 2. It dis-
plays three decades of self-affine roughness, from a few tens - 607
of nanometers to a few tens of microns. Expanding the ex- i{.
pression ofC(u) in Eq. (1) leads to an equivalent form: = 40
<
((2(0)=2)(2(x+u)=2)) Az( u| % 2 20 ¢
(Z0-27) 79
0.0
where the macroscale surface heights the mean of the : : :
microscale surface heigit=(z), and 00 1.0 20 30 40
log,,(k)
A2= C(70) (4) FIG. 2. Power spectra of the laminated surface profile obtained
2([z(x)—-Z]%" in Ref.[12].
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— H3 H g
Q=- m(ﬁvp‘l‘ §(U2+ U1)+ Ed’s'(Ul_UZ)a (6)

whereo is the composite root mean squdrms) roughness
classically defined as= \/012+ 022 (Whereo;=\(z— Z;)?is
the rms microscopic roughness of surfageReynolds flow
factor ¢p and ¢ are diagonal tensors in the,f/) coordinate
frame given by

FIG. 3. System of two rough surfaces in sliding motion: a mac- ;
roscopic view. ( ¢y O ) H3(a %)
considered to be parallel. A reference plare0 is intro- 0 4y 0 @
duced, and each surface is described by its local height H3
with macroscopic heighfz;)=Z;, wherei=1 and 2. In this
study it will be considered that both surface roughness are 1 2,—-Z2,+2,— 7,
independent, and that deformations of surfaces are ignored. 5= — < 3 > 0
Contacts between surfaces are not permitted. Hence the local = o(a 3) a @)
aperture, defined bg=z,— 2z, is always positive. The mean 0 0
local aperture/a) at the microscale is simply related to the
local macroaperturél, (a)y=H=2,—Z;. The left term¢ is nothing but a reformulation of the well-

In such a confined geometry, inertial effects are generalljknown composition of parallel or series resistances, and is
negligible, associated with a very small Reynolds numberrelated to pressure forcing. Thé, parameter, associated
The laminar fluid flow between two rough surfaces is generwith parallel resistances, will not be analyzed further in the
ally simply not related to the surface topograpl®p]. An  following because of its trivial dependence on the aperture
important exception occurs when surface slopes are smdllield, i.e, the third moment of the aperture distribution, which
everywhere. In this context, which covers a broad range ofloes not depend on the two point correlation of the aperture.
manmade surfaces, the Stokes formulation of the momentui@onversely, the first flow factap, does depend on this cor-
equation is simplified by the Reynoldsibrication) approxi-  relation structure, and thus will be of interest in the following
mation. In this approximation the pressure is constant ovesections. The second tenség, which has only one nonzero
the local aperture between the solid surfaces, and the locabmponent, comes from the mean contribution of the surface
velocity field has a negligible vertical component. The veloc-motion on the lubricant flux, in the roughness streak direc-
ity field has two contributions: a Couette one coming fromtion. Similarly the tangential shear vectaer which is the
flow due to moving boundaries, and a Poiseuille one comingtress tensor projection tangentially to the mean surface
from the pressure gradient. The Couette contribution admitplane, can be homogenized and exhibits some Couette and
a local linear vertical dependence, while the Poiseuille ondoiseuille contributions,
has a vertical parabolic profile. The pressure field completely
determines the flow field, and is related to the geometry by a

o
bidimensional local Reynolds equation, =2

H
(il £ gprs) - (U= U 5 by VP, ®

where 7, is associated with the upper surfaee, with the
lower one, and is the identity tensor. The Couette shear
flow factors tensors are again diagonal in theyj frame,
wherep denotes the pressure at the microscale, @nslthe  and read

lubricant viscosity. The Reynolds equation is thus similar to

a heterogeneous Darcy law with a permeab#ityl2 related pi=H(a™)

to the underlying local distance between surfaces. The sur-

\Y aSV —1V U,+U 5
'@P—E a-(Up+Uy), 5)

face velocities act as a source term that will locally increase 21+2,-2,—Z,\(a ?)

the flow, and thus the pressure. When the local microscopic b1s=3H < ad ><a3>

scale is very small compared to the large scale macroscopic

description, one may find a homogenized macroscopic equa- @ss= 21+2,—2,—2,

tion for the local Reynolds equatid®). - T 0
0 0

C. Macroscopic Scale

By using homogeneization or volume averaging tech- ©
nigues as shown in Ref§26—28, one can relate the spa- The first term is scalar, and comes from the average of the
tially averaged divergence free unit flo@ to the macro- Couette shear of sliding surfaces. The second term is less
scopic pressur® through the equation intuitive, and shows some dependence on both the surface
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height and the local aperture. The Poiseuille shear flow factained from complex Gaussian amplitudes of the height Fou-

tor, driven by the pressure gradient, reads rier representation. The chosen wave vector dependence of
the height Fourier transform allows one to generate either a
bip O (a”?) 0 sho_rt—range—correlated height profile or fractional Brownian
(a) H(a 3) motion. _ . _
b= o0 |= (10 The flow-factor computation has been achieved with an
H 0 @ 1 exact integration scheme. Generically, one only needs to spa-
H tially integrate some integer power of the local aperta'te

for which an exact expression of the integration elements is
Hence macroscopic effective equations can be explicitly reeasy to perform. When surfaces are close to contact, this
lated to the microstructure geometry, i.e, to the local apertur@recise procedure avoids using an adaptative step integra-
and surface height, through five nondimensional parametergion, and minimizes the computation error. The profile length
Two of these are associated with the pressure gradient andand the number of profiles have been varied so that the
are called Poiseuille flow factor§.e., ¢,,¢¢,). Three of  computed quantities satisfactorily reach their mean estimate.
them are associated with the surface relative velocity, and argypically, L has been chosen between 512 and 2048, and the
thus called Couette flow factorS.e., ¢s, b1, ¢bts). In the  number of realizations from 500 to 1000.
special case considered here, surfaces 1 and 2 are uncorre-
lated. The aperture field can be considered to be decomposed
of two surfaces of heights equal to zero angd-2z; [29].
Then it can be deduced that the Couette flow factors depend This section considers finite correlated microgeometry

A. Short-range correlated Gaussian surfaces

0n|y on the local aperture field, through profiles. The correlation Iength is bounded by the Composite
roughnesss and the elementary representative sdalé.e,
oi—o3 oi— o3 o<\<L. The first boundg, is related to the small slope
ps=———Py(H,0{a}), ¢1s=———Prs(H.{a}) hypothesis that underlies a flow-factor macroscopic descrip-
T a 11 tion through the lubrification approximation. The second

bound comes from the definition of the elementary represen-

whereo is the composite roughness and tative scaleL.. _
Two asymptotic situations when surfaces are either far

1 (a7?) (a=?)? from or close to each other are specifically considered in
= H-—5-] ®4s=3H (a hy— — |- order to shed some light on the numerical results. These two
(a™) (a™) 1 limits allow one to perform some analytical analysis. In the

first regime, the macroscopic mean apertdrées considered

It is noteworthy that in the case where both independento be large compared to the composite roughnesgheir
surfaces share the same rms roughness, flow fagipend  ratio being a small parameter, it is used to expand the flow-
¢ cancel out. This is a manifestation of the statistical symfactor expressions. In the second regime, it is stated that even
metry of the surfaces, which is also recovered for determinif the correlation length is smaller tharl, it is larger than

istic symmetrical surfaces. Section IIl studies how these surthe minimum aperture. This minimum aperture can be con-
faces vary with the macroscopic apertut¢ and the S|der_ed as a small parameter to construct a saddle point ap-
microgeometry statistical properties. In the following, it is Proximation for flow factors. .
considered that the height distribution of each surface results The situation when surfaces are far from each other is
from a Gaussian stochastic process. Being the difference béonsidered first. This case is related to some weak disorder
tween two Gaussian processes, the aperture field is also@pPansion based on the parametéH, which measures the
Gaussian process, and therefore is fully characterized by it€lative fluctuation of the local aperture field. Expanding re-
mean and covariance. It is thus investigated how the apertufations (7)—(12) in powers of this parameter, one finds, to
correlation influences the transport properties of the lubricanfirst order[29], wheno/H is small,

between the two sliding surfaces, through flow factors.

oy 1+6(0 " il bio=1 3(0)2 (13)
lll. FLOW FACTOR COMPUTATION x TTOH) e T T HJ
From definitions(7)—(12), it is now possible to compute bi=1+ a 2 P..~3 a 2
flow factors. Nevertheless, their average on stochastic micro- = H/ fs H

geometries are mainly the quantities of physical interest.
Such a statistical description needs to perform its average onhis result is generic, and does not depend on the specific
the random surface height. This computation is numericallytharacteristics of the microgeometry. Nevertheless, the pre-
performed, and compared to analytical estimates. cise range within which these expressions are valid does de-
The numerically generated profile correlation function canpend on the microscopic statistical correlation. In fact, some
be prescribed using their Fourier formulatip80]. A Her-  higher order terms of the weak disorder expansion in the
mitic representatioz(k) = —z*(—k) imposes a real profile. small parameter/H are needed to exhibit such a depen-
Gaussian height probability distributions of profile are ob-dence. For example, one needs to consider the third (tiven
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sixth power ofag/H) to obtain an explicit dependence ¢f 1.0
on the aperture correlation functigB1]. Result(13) show

that when surfaces are far from each other, the flow factors 0.8 b——— ro=1024
tend either to O or 1. Then, in this limit, macroscopic equa- —-—- No=2048
tions are perfectly identical to microscopic ones. The aper-
ture heterogeneities do not play any role, and macroscopiza- ¢, 06 T
tion is trivial. Relationg13) then give the first correction for 3
macroscopic equations arising from the microgeometry 0.4 1 I g a3
roughness. The physical interpretation of the obtained results ///// o
can be briefly discussed. The Poiseuille flow fact¢rsand 02 | i -
¢+, are diminished proportionally to the surfaces height vari- ; )
ance, showing that the fluid flow and the shear stress due to ;i 10 0w 1o’
the pressure gradient are slowed down by the presence of 00— 4 = '
roughness. Some additional fluid flow is then generated by Hjo
this roughness, proportional to the velocity difference be- - .
tween surfaces through the flow factbg. Finally, the main FIG. 4. ¢, flow factor for a finite correlation length.. The
shear generated by the roughness is of Couette Orighjﬁontlnuogs line represents the weak disorder approximation ex-
through flow factors¢; and ¢¢s. This shear, while mostly pressed in Eq(13)

parallel to the surface velocity difference through the flow

factor ¢, has a slight misalignment to this kinematic field 6 o° H V2
o J J f o= \[;H—g V)€, De=—"—\2¢, ¢yp=
m

T
Wo=2.46

through . This amounts to a macroscopic expression o ra H, &

the misalignment between the microscopic one-dimensional (16)
roughness directior and the kinematic surface velocity dif-

ference directiord,— U;. These results are typical of stochastic geometries. It is ex-

Let us now turn to the second regime, where surfaces argected that flow factorg, and ¢, cancel out when micro-
close to contact. It is also possible to obtain some analyticajeometry surfaces tend toward contact. As a matter of fact,
estimates of the flow factor behavior in this regime. To thisthese Poiseuille flow factors, describing the flux and shear
end, it is necessary to consider the aperture probability derinduced by the pressure gradient in the direction of streaks,
sity function(PDP p(a,x), which is the probability of find- are zero when the passage is blocked up. The precise depen-
ing an aperture at positionx relative to the prescribed mini- dence of these flow factors on the surface minimal distance
mum atx=0, i.e, a conditional PDfp(a,x)=p(a(x)|a(0) o€ is governed by the aperture geometry near its minimum.
=0). The dependence gf(a,x) on the distancex to the  They differ from previous analytical results on deterministic
minimum is crucial, because the main contribution to flowsinusoidal surfaceg32]. For example ¢, displays a power
factors comes from the aperture distribution near contacof €> rather thane? for a deterministic sinusoidal aperture.
Nevertheless, the precise form of this PDF will not signifi- Once again, it can be shown that this is a direct consequence
cantly influence the flow-factor dependence with the mini-of the geometry of the minimum aperture vicinity.
mum aperture near contact. Defining some minimal distance Results(13) and (16) are compared with the numerical
oe, with mina(x)=ce, allows one to describe the surface computations sketched in Figs. 4—8. These simulations have
closeness, with a nondimensional arbitrary small parametdreen performed with a Gaussian short-range-correlation
e. Itis then possible to approximate the negative moments ofunction of the formC(u)=o?(1—e" uz’”2), varying the

the aperture distribution given by correlation length\, by an order of magnitude from
1L * 1.0
(a™")= Ef dxf p(a’ . x)(ec+a’) "da’, (14
0 0
. . . . . L . 0.8 r
with a saddle point estimate. This estimate is given, provided
that the first and second derivatives(fa,x), with respect
to a, ata= e, are bounded by o 06T
[ 2w 0.4 |
—n\ __ -n+1
(@ M=I(\) n(n_’_l)(a'ns) , (15
L ) . ) 02 t
wherel(N\)=[op(0x)dx/L is a function of the correlation
length A which depends on the probability function at the
minimum, which is not precisely known. Approximation 0.0
(15 holds forn>1. Whenn=1, the saddle point approxi-
mation is no longer sufficient to capture the diverging behav-
ior. From Eq.(15), we can thus write the flow factor approxi-  FIG. 5. ¢y, flow factor for a finite correlation length with the
mation, near contact, as same convention as in Fig. 4.
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FIG. 6. @ flow factor for a finite correlation length with the

FIG. 8. &4, flow factor for a finite correlation length with the
same convention as in Fig. 4.

same convention as in Fig. 4.

5% 10 3L to 5x 10 2L, for various elementary representa- . . o _
tive scalesL. The flow-factor behavior have shown no de- the one obtained in the deterministic sinusoidal ci&&.
pendence on scale as expected from flow factors definition This divergence is associated with an increasing Couette
and short-range correlation, whexe<L. The insets of the shear, experienced when surfaces are close to contact. How-
figures especially illustrate Eq16) asymptotic behavior. ever, the power law exponent depends on the correlation
The first estimatdEq. (13)] is rather good whemd/o>5. length\, as can be deduced from Figs. 7 and 8. The larger
The saddle point approximation’s quality depends on thehe correlation length, the more flow factors diverge, and the
considered flow factor. The more peaked they are near corarger them exponent is. Nevertheless this dependence is
tact, the better approximated they are. Hence the nondimemather smooth, as obtained from Fig. 9, which exhibits a
sional permeability¢, is well captured by the asymptotic logarithmic dependencems=—In\. It is noteworthy that
due to its—3 power dependence on the local aperture agvhen \ is small, them exponent tends toward zero. The
represented in Fig. 4. Moreover, thf prefactorl(\) de-  Couette shear divergence disappears as the correlation length
pendence on, has been found from a data collapse of thetends toward zero. Nevertheless this limit has to be consis-
numerical simulations, indicating a scalih@\) =\ "*2 &, tently considered with the hypothesis of a small slope, which
and®d are well described in the close vicinity of contacts by gives a lower bound for the correlation length o. In this
the saddle point estimate, but poorly approximated waen |imit, the divergence of shear Couette flow factors is still
>0.1. algebraic but with a small exponent. The other limit, where
The analysis of the Couette shear flow fact¢fsand®s )\ =L, extrapolating the results of Fig. 9, gives a value that is
behavior, in the vicinity of contact shows an algebraic diver-cjgse to 1/2, for the exponent This value is then consistent
gence, as sketcheq in the inserts of Figs. 7 and 8. This dive{yith the exponentm= 1/2, obtained when analytically com-
gence is characterized by a power law expoment puting these flow factors, using a sinusoidal aperture distri-
-m bution, which coincides with a random aperture profile with
P Prsx(oe) T (17 correlation length equal to the representative stdla2].
This algebraic divergence of the shear Couette flow factors,

with a minimum distancere, is qualitatively consistent with 0.40
1.7 T
Vo
16 | N 030 |
i 10
15t m
0.20 +
br1.4 ¢
13 0.10 +
12
L 0.00 ‘ a
1.1 107 10"
ML
1.0

FIG. 9. Power-law coefficienn of the shear Couette flow factor
vs the correlation length with the same convention as in Fig. 4.
FIG. 7. ¢; flow factor for a finite correlation length with the The dot size represents the error bars of the numerical computa-
same convention as in Fig. 4. tions.
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B. Long-range-correlated surfaces 1.0

Long-range-correlated self-affine profiles are now under
study. Such fractional Brownian motions do not display any 0.8
typical correlation length, between a lower cutgff and an
upper cutoffL.. The flow factors are nevertheless strongly
influenced by their long-range-correlation characterized by
the Hurst exponend and the roughness amplitude

When surfaces are far apart from each other, the weak
disordered result$Eq. (13)] do apply, and give a correct

by 0.6

0.4 r

estimate of their dependence on the imposed mean macro- 0.2t
scopic distanceH. Conversely, when surfaces are close to

contact, the transport properties become sensitive to the cor- 0.0
relation specificity, in particular in the region where the ap- 1

erture is minimal. As a matter of fact, fractional Brownian
motion displays some interesting specific properties near the FIG. 10. ¢, for a self-affine aperture. Hurst exponents ranging

max_ima ‘T’md m,imma' Some results, conjectured from NU%6m 0.1 to 0.9 have been computed. The inset shows the numerical
merical simulationg33], have stated that there are two re- yata collapse obtained using rescalfiig. (24)] near the contact.
gimes for the conditional probability density function of the

aperturep(a,x) estimated at distancefrom the minimum :  ysing normalization(19), one can estimate in the limit,
wherex*<L,,
a>a*

1¢ a
p(ax)=1 a |x¢
xx 17¢  a<a’,

(18) fx*dxx_l_(a*:l—fmu¢(u)du. (22

/e 1

P ) . . The right-hand side of relatiofR2) is constant; then, near
Herea*(x*) is the typical aperture for which the fractional .gntact the simple result holds:

Brownian motion loses the memory of the maximuor
minimum) position far fromx*. Thes{e two constants are re- 1
lated by the affinity scaling*=Ax*¢. The first regime of a Mor——————(
Eq. (18) is simply given by the rescaling invariance of the @ x**Leyn(n+1)
aperture cumulative distribution function. The second regim
is far from simple and there is, for now, no mathematical
demonstration of if34]. This twofold behavior is neverthe-

oe) "L, (23

ﬁ:rom this estimate, one can compute the flow factors’
asymptotic expressions near contact :

less known in the special case of Brownian motion wijen 2unt 4 2
=1/2. The specific behavior of the aperture field near contact <7 X L €2 =-—"_2 ~-_

. bx 3 Lc€ bs €, Pipx €.
influences flow factors when surfaces are near contact. The H o Hm
normalization condition of the PDF is related to the upper (24

and lower cutoffd_ ;. and/: _ _ .
One may note that these asymptotic behaviors are quite close

Le % to the previous results for finite correlation lengEy. (16)].
f de p(a,x)da=1. (199 Their dependence on the minimum distancés identical,
e 0 but the prefactor ofp, now displays some dependence on
. , ) the Hurst exponent and the upper cut off ;. It is interest-
The representative typical scalefor averaging flow factors g 1o note that an increasing correlation of the aperture,
has to be chosen so tha&L.. For the sake of simplicity, agsociated with an increasing Hurst exponent, leads to an
one has choseb=L. in the following, while other choices jncreasing permeability when surfaces are close to contact.
would nevertheless not have modified the obtained results. These estimates are fully consistent with numerical results

As previously done, a saddle point estimate of the ”egé_‘t_iv?eported in Figs 10-12. Scaling@4) allows a data collapse
moment of the aperture can be computed, from the definition eyery numerical computation of the nondimensional per-

meability ¢, near contact when the Hurst exponent varies.
The linear dependence df,, with upper cutoffL., has also
been numerically checked, but is not represented in these
figures for clarity’'s sake. Simulations sketched in Figs.
Taking relation(18) into account, it can be approximated, for 10—12 also permit one to estimate the validity of the saddle
a smalle, point approximatior{Eq. (24)], which begins to hold when
€<0.1.
1 (o o As previously observed, Couette shear flow factgxs
(a M= _fx dxx 174 /—(Ué)—nH, (21) and® diverge when surfaces are close to contact. From the
Led s, n(n+1)

twofold aperture behavior near contgBi. (18)], it is clear

1 (L *°
(a”):L—J/ dxfO da’'p(a’,x)(ec+a’) "da. (20

011202-7
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1.0 . . ; . ; , 2.0
0.8 18 f

. 0.6 | b 16
0.4 r 1.4 +
02t 12t
0.0 1.0

FIG. 11. ¢;, for a self-affine aperture with the same conven- FIG. 13. ¢; for a self-affine aperture with the same conventions

tions as in Figplo as in Fig. 10. The inset shows a power-law divergence that depends
T on the Hurst exponent near contact.

that their shared divergence with ttha~ ') moment cannot . , -
be captured by a rough saddle point estimate. This diVe',r_relatlon of the aperture field, where the algebraic divergence
gence numerically display the same interesting power IaV\9f Ithe %ou_etts _shehar flcr)]w flr_;wt_ors ﬁllsapqegrsb Tﬁh:zo.dZS
behavior as in the previous section. More precisely, the inYaU€ obtained in the other limit, whege~1 Is bounded as
sets of Figs. 13 and 14 show the power law behavior nea?xpec'ged by the deterministic result on a sinusoidal aperture,
contact, whose exponentdepends on the Hurst exponent Or_l‘_"k’]h'Ch m= 1/|2' N hat the C H .
The more correlated the aperture field is, the higher the value_ ' "€S€ results show that the Couette shear stress Is
of ¢ is and more divergent the Couette shear is. This join .trongly mfl_uenced by the Iong-rangg hature of the aperture
behavior can be related to the Hurst exponent, as sketched Wld' espeually near contact. Numerically, th.e Couette shear
Fig. 15. This figure displays a power law dependence optress displays a power law dependence with the Hurst ex-

shear flow factors near contact, which have the form ponent, WhiCh cannot be captur_ed by a sadc_JIIe point approx?-
' mation. It is nevertheless tempting to associate the algebraic

b D e Mo E*(dcg), (25) dependence of t.he power Ia_w expo_nemtwith the specific
behavior of fractional Brownian motion near contact.

wherec andd are two constants related to the surfaces am-
plitude A. Such an algebraic divergence of the Couette shear IV. CONCLUSIONS
flow factors was already obtained for a finite correlated ap-
erture. Here the power law exponemtof this algebraic di- Newtonian lubricant flow, between two microscopically
vergence is shown to depend algebraically on the Hurst exstatistically independent anisotropic surfaces in sliding mo-
ponent. The power law exponemtcan be extrapolated from tion without solid contact, has been studied. The macro-
Fig. 15 for Hurst exponent valugs—0 and{—1, for which  scopic flux and shear experienced by both surfaces are re-
it exhibits the extreme valuesi—0 andm—0.25. These lated to their microscopic roughness through five
limits are consistent with the ones previously obtained fomondimensional flow factors. The aperture field between sur-
finite correlation in Sec. 11— 0 is associated with a deco- faces entirely determines these flow factors. They have been

N 4.0
3.0 1
20 ¢
b, .
20 1
1.0 Fon
1.0 t
0.0 : : : : : : 0.0
1 2 3 4 6 5 5 1

FIG. 12. & Flow factor for a self-affine aperture with the same  FIG. 14. &, for a self-affine aperture with the same conven-
conventions as in Fig. 10. tions as in Fig. 13.
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-0.50 bottom surfaces are intercorrelated. Such a correlation be-
tween solid surfaces occurs naturally during the rolling pro-
070 1 P cess, where roughness is transferred from the steel roll to the
—0.90 | / workpiece[12] as well as in any process where deformations
= e conform the two pieces one another. In this case, one has to
50_1,10 L consider a spatiotemporal average rather than a simple spa-
&b tial average in order to compute flow factors, as indicated in
—-130 ¢ 2 Ref. [36]. For a simple deterministic geometry, analytical
/ results show that intercorrelation mainly affeets and ¢+
130 o ] [32], which are equal to zero when top and bottom profiles
~170 & are identical. Moreover, numerical simulations as well as

0.00 0.‘20 0“40 0.60 o.éo 100 symmetry cpnsideration; indicate that this result also apply
4 for random identical profile35].
Moreover, the obtained result for the shear flow factors
FIG. 15. Diverging Couette shear flow factors exponantear  strongly depends on the one dimensional confinement of the
contact, vs the Hurst exponetit The dot size represents the error microgeometry. In particular, the divergence of the shear
bars of the numerical computations. Couette flow factors will be smoothed out by two-
dimensional effects. In the case of a two-dimensional micro-

computed numerically for short- and long-range apertureSCOPiC roughness, flow factors cannot be computed directly
correlations. Asymptotic situations, where surfaces are eithdfom the moments of the local aperture, but must be evalu-
close to one another or far apart, have been analytically studited from two-dimensional numerical computations required
ied and compared to numerical calculus. The Poiseuille flow© Solve closure problen{$6]. Such a procedure should ex-
factors ¢, and ¢, and the Couette shear flow factd, hibit, gt some point, nondiverging shear flqw factors when
exhibit rather generic behaviors when surfaces are close taching solid contact between surfaces. Finally, some non-
contact. It has nevertheless been found that the nondimeslimensional coefficients, characterizing the anisotropy of the
sional permeabilityp, prefactor does depends on the aper__mlcroscale roughness —such as the Peklenik number found
ture correlation. Couette shear flow factabs and ;. di- N Refs.[26,4— should provide a natural lower cutoff for
verge as surfaces are brought into contact. The exact natulae reported diverging behaviors.
of this divergence depends strongly on the aperture correla-
tion. For a short-range-correlated profile, the Couette shear
flow factors diverges algebraically, with a power law expo-
nent which logarithmically depends on the correlation We would like to thank R. Cerf, P. Carmona, and S. Roux
length. For a long-range-correlated profile, the Couette shedor interesting discussions. This work was supported by the
flow factor exhibits an algebraic divergence with the mini- Research Project Contra@@PR “Mise en forme des mate
mum aperture. It has been found numerically that this diverfiaux: Contact outil-m&l-lubrifiant” between CNRSSC3,
gence has a power law dependence on the Hurst exponent m§id (Usinor Group, Pechiney Center de Recherche de
the aperture correlation. Voreppe, Paris Sud Orsay UniversitgMS), College de
This study has been confined to uncorrelated profilesFrance(PMC), ECL (LTDS), INPT (IMFT), INSA de Lyon
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